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SUMMARY 
A flux-based modified method of characteristics (MMOC) methodology in 1D is described which has the 
following properties: unconditional stability (though explicit), exact answers for integer CFL (Courant) 
numbers, completely conservative (locally and globally) and able to utilize various flux limiters and various 
characteristic- (trajectory-) tracking algorithms. The use of characteristics based on cell-wise constant 
characteristic velocities results in considerable code simplification, and Van Leer's MUSCL is an accurate 
and cost-effective flux limiter. For CFL> 1 the flux limiter is applied only to the non-integer part of CFL, 
whereas the integer part is exact for constant velocities; therefore accuracy improves with larger CFL. It is 
not a cheap algorithm, although explicit, because the operation count per time step increases with the integer 
part of CFL, but it is much more accurate than the commonly used implicit upstream differencing. This 
flux-based MMOC method is well suited for groundwater flow calculations in which large local Courant 
numbers arise owing to grid clustering. 
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INTRODUCTION 

In the reservoir simulation communities (both hydrocarbon and water), especially for two-phase 
flows, implicit upstream differencing is still a commonly used method for treating advection 
terms, as in the discretization of the constant coefficient model equation 

aflat =-uaj- /ax (1) 

(2) 

CFL = uAt/Ax. (3) 

for u > 0 by 

f (i, n+ 1)=f (i, n) -CFL(f ( i ,  n+ 1)-f (i- 1, n+ l)), 

where CFL is the Courant number (or Courant-Friedrichs-Lewy number) 

This widespread use of implicit upstream differencing occurs in spite of the well-known and 
serious accuracy problems associated with the implicit artificial viscosity of the method. Explicit 
upstream differencing 

f(i,n+l)=f(i,n)-CFL(f(i,n)-f(i-1, n)), (4) 

is bad enough, with a simple Taylor series analysis' indicating the transient artificial viscosity 
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coefficient 

a,(explicit upstream)= (uAx/2) (1 - CFL), 

but the implicit upstream method gives 

a,(implicit upstream) = (uAx/2) (1 + CFL). 

We note immediately that at least the explicit upstream method for the constant coefficient 
model equation gives the exact answer for CFL= 1, i.e.f(i, n + l)=f(i- 1, n), whereas the implicit 
upstream differencing method never does. More significantly, the artificial viscosity of the implicit 
upstream method gets very bad for CFL%l, which is, after all, the only condition which justifies 
its use compared to explicit upstream differencing. Comparing CFL = 0.5 for explicit and CFL = 5 
(considered low) for implicit, this simple analysis indicates (1 + 5)/(1-0.5)= 12 times the artificial 
viscosity. (Also note that explicit upstream differencing has the transportive property,’ whereas 
implicit upstream differencing, and indeed all other implicit methods, do not.) 

NON-FLUX-BASED MMOC DERIVATIONS OF DIFFERENCE METHODS 

Recently, many authors (see e.g. References 2-19) have been developing and applying the 
modified method of characteristics (MMOC) and related methods (‘Eulerian-Lagrangian’ 
methods, etc.) to these problems in both a finite difference and a finite element framework. (For 
the history and scholarly comparisons of these various characteristics-based methods, see 
Reference 2 or 3 and the recent review of ‘semi-Lagrangian’ methods by Staniforth and C6tt.”) 
The MMOC approach takes a Lagrangian viewpoint, or particle tracking, for advection. 
Basically, the evolutionary equation is a discrete analogue of the substantial derivative equation 
D(f)/Dt = 0, expressed as 

f(i, n + 1) =f# =f(x #, n). (7) 
The location x#  at the ‘foot’ of the characteristic is found by ray-tracing the velocity field 
backwards from (x(i), n +  1) to time level n. Then the valuef# =f(x#,  n) is found by interpola- 
tion in the ‘core’ cell or ‘core elementy3 containing the foot of the characteristic. 

Consider constant u>O and CFL< 1; then x #  lies between x(i- 1) and x(i) as in Figure 1. If 
f# = f ( x # )  is evaluated by linear interpolation between x(i- 1) and x(i), with CFL being the 
interpolation parameter, the result is just explicit upstream differencing, equation (2). If quadratic 
interpolation between x(i- l), x(i) and x(i + 1) is used, the result is just Leith’s method or (for the 
single constant u-equation) the Lax-Wendroff method, 

f(i, n+ f)=f(i, n)-(CFL/2) (f(i+ 1, 8)- f ( i -  1, n)) 

+(CFL2/2) (f(i+ 1, n)-2f(i, n)+f( i -  1, n)). (8) 
See e.g. Reference 1. (Although equation (8) is specific to both u and Ax constant, quadratic 
interpolation still gives the generalization of Lax-Wendroff for variable Ax.) 

We see again what often happens in CFD, that distinctions in ‘methods’ such as finite difference 
versus finite element versus finite volume, or in this case finite difference versus method of 
characteristics, are often distinctions not in the numerical ‘method’ at all but rather in the 
‘methodology’ used to derive the numerical method; see e.g. Reference 21. However, the methodo- 
logy can be very significant. For example, the usual methodology of finite differences is based on 
Taylor series expansions which presume the existence of ever higher derivatives, whereas the 
MMOC approach only requires interpolation accuracy, which is satisfied with the weaker 
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Figure 1 .  Non-flux-based MMOC derivation of difference equations for C F L i  1 

Lipschitz condition. More importantly, the Taylor series approach alone would never suggest (we 
maintain) the extension of the explicit method for CFL> 1, which is obvious from the MMOC 
viewpoint, as shown in Figure 2 for 2 < CFL < 3, namely linear interpolation forf(x # ) between 
i - 3 and i - 2 for upstream and quadratic interpolation forf(x # ) between i - 3, i- 2 and i- 1 for 
Lax-Wendroff. 

The original interpretation of the CFL stability limit CFL< 1 for explicit methods (as given by 
CFL themselvesz2) was based on characteristics theory and terminology, namely that the discrete 
domain of influence must include the continuum domain of influence, which reduces to requiring 
that the explicit upstream method must interpolate forf(x # ), not extrapolate. (Note that this is 
so well known by now that it seems intuitively obvious, but it was not, since CFL required good 
mathematics to prove it.) The same interpretation holds for MMOC, but since the interpolation 
interval is changed for CFL> 1, there is no stability limitation, i.e. this explicit method is 
unconditionally  table.^,'^,^^ (Is this intuitively obvious?) For u constant and Ax constant this 
MMOC viewpoint results in a simply shifted finite difference algorithm and one obtains the exact 
solution not just for the condition CFL= 1 but for CFL=any integer, the exact solution being 
f(i, n + 1) =f(i- CFL, n). 

When the backward-tracked characteristic extends beyond the spatial domain of the problem, 
say to the left of x(l), the interpolation is now done over the possibly time-dependent boundary 
conditions, betweenf(x(l), n + l),f(x(l), n),f(x(l), n - l), etc. Since these may be known in some 
continuum (possibly analytic) basis, these may be more accurate evaluations (not requiring 
spatial discretization), so the influence of boundaries can be more accurate than with the ‘interior’ 
discreti~ations.~~ 

TWO PROBLEMS WITH NON-FLUX-BASED MMOC 

There are two problems with this standard finite difference non-flux-based MMOC methodology, 
namely non-conservation and ‘wiggles’. When applied to the variable coefficient problem (vary- 
ing u), the method is not conservative. Several authors note this5-9,’3*14,20 and find for their 
problems that the error is tolerable. (The ELLAM method of Celia et a/.’ is globally conservative, 
at least for the constant coefficient problem.) The wiggles1 are of course easily cured by two-point 
linear interpolation, i.e. upstream differencing, but the accuracy suffers. We want to use higher- 
order interpolation, i.e. Lax-Wendroff differencing, but this is subject to bad oscillations for steep 
fronts, so we also want to use a non-linear flux limiter such as FCT (flux-corrected trans- 
p~r t ) , ’~ - ’~  TVD (total-variation-diminishing methods, see e.g. References 29-36), E N 0  (essen- 
tially n o n - o s ~ i l l a t o r y ) , ~ ~ ~ ~ ~  PPM (piecewise parabolic method):39 or UL (ULTIMATE limiter):’ 
but these are not readily applied to the non-conservation (substantial derivative) form of the 
governing equations. 
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Figure 2. Non-flux-based MMOC derivation of difference equations for CFL> 1 

Fortunately, both these problems are solved by adoption of a flux-based MMOC methodology 
(FB-MMOC), which we now describe. (See Reference 41 for an earlier description and prelimi- 
nary results.) 

FLUX-BASED MMOC DERIVATIONS OF DIFFERENCE METHODS 

Adopting now a finite volume viewpoint, as shown in Figure 3 for CFL< 1, we focus on the 
evaluation of fluxes into and out of the control volume consisting of cell i. We know that 
conservation is guaranteed (independently of accuracy) if the flux into the cell at i over the left face 
(at ‘i - F) is algebraically identical to the flux out of the cell at i - 1 over the same face. Also, the 
face fluxes are all that we need to apply the now highly developed machinery of flux limiters to 
control the wiggles. 

For C F L e  1 as shown in Figure 3, the integrated flux across the left face of cell i is given by 
f # , U,At ,  where U ,  is the fluxing velocity at the left face, perhaps interpolated to At12 between 
time levels n and n +  1, andf#, is the value offinterpolated to the foot of the characteristic that 
passes through the centre (at At/2)  of the left face. (Note the underlying assumption of linear 
variation, i.e. second-order accuracy.) Similarly for the flux through the right face with fluxing 
velocity UR. The corresponding flux-based time-stepping formula is 

f ( i ,  n +  1)=f(i, n) -At (U , f#R-  UL f # J A x .  (9) 
In this finite volume viewpoint, the f s  are spatial control volume averages, rather than nodal 
values, whereas the Uf# terms are time averages. The flux-based time-stepping derivation 
requires lower-order interpolation to generate the same difference methods as the non-flux-based 
MMOC, i.e. linear interpolation for flux quantitiesf# now yields the Lax-Wendroff method and 
piecewise constant (upstream-biased) ‘interpolation’ yields the explicit upstream differencing 
method. 

ERRONEOUS FLUX-BASED MMOC METHODOLOGY FOR CFL> 1 

The obvious next step is to extend this derivation for the flux-based MMOC to CFL> 1, as in the 
non-flux-based MMOC. However, there is a key point involved in evaluating the face fluxes. 
A naive and disastrous methodology consists simply of using the MMOC to track back the 
time-centred face flux quantities, f #  at x ( i -  4, n +4) and f# at x( i  + f, n + i), as shown in 
Figure 4(a), and again apply the flux-based time-stepping formula, equation (9). 

The inadequacy of this approach is demonstrated by the counter-example (provided by 
Dr. K. Salari) shown in Figure 4(b). Considering CFLS 1 and a step function profile which is 
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Figure 4. Flux-based MMOC derivation of difference equations for CFL> 1 

advected to the right, it is clear that the fluxes into and out of the cell at i to the right of the step 
profile are identical and hence the application of equation (9) at i calculates no change! 

CORRECT FLUX-BASED MMOC METHODOLOGY FOR CFL> 1 

The key point is to evaluate the sum of flux contributions over all intermediate cells, as in the 
work of Russell4* and the ELLAM method of Celia et al.' Basically, from a finite volume 
viewpoint (or perhaps finite element in time? or McCormick and C a i ' ~ ~ ~  'finite volume element'?) 
we need to evaluate the integral of flux across the cell face over time. In the naive FB-MMOC 
above we attempted a trapezoidal rule integration 

f ( i - $ ,  t )  U dT=f# U ( n + f )  At+O(Ax2, At'). ltt+Ar 
Although centred in time and therefore 'second-order-accurate', the method can fail for CFL> 1 
when the midpoint value may not be a good representation of the average. 
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The correct methodology is to approximate the integral by piecewise constant increments from 
each upstream cell, located by characteristic tracking: 

f ( i - 3 ,  t )  UdT= f ( i -  1, n) z(i-1) Uc(i- 1) 

+ f ( i  - 2, n) z(i - 2) Uc(i - 2) 
+f( i -3 ,  n) z(i-3) Uc(i-3) 

The notation is clumsy, but the methodology is easily described geometrically, as in Figure 5. 
The notation is simplified if we start the time step at  t=O. (For a general method of trajectory 
tracking, the characteristic lines in Figure 5 could be curved.) The unmarked solid characteristic 
lines indicate characteristics tracked forwards from the edges of upstream computational cells. 
The characteristic line marked by triangles is tracked backwards from the end of the time step At. 
The dashed characteristic line is tracked backwards from t # , the centre of the last (partial) cell 
time interval. The zs are partial time increments. The Ucs are the fluxing velocities at the cell face, 
(possibly) interpolated to time level tc. The tcs are time levels at the centre of the partial time 
increments. The time level tbot is determined by the intersection of the leading-face characteristic 
from cell i-iCFL to the face at i-9. The index value i - iCFL is the i-index of the ‘core cell’ for the 
face at i-4, i.e. the most upstream cell whose leading-face characteristic reaches the cell face i-4 
(at which we are evaluating the flux). The characteristic tracked forwards from the trailing face of 
cell i-iCFL is above t + A t  at the location i-4. 

This flux-based MMOC methodology incorporates many possible methods, with differences 
primarily involved with the following four evaluations. 

The fluxing velocities at the interfaces 

These are the terms Uc(i-ii), where ii runs from 1 to iCFL. A more suggestive notation for 
Uc(i- ii) is U(i-4, tc(i- ii)), where tc(i- ii) is the centre of the partial time interval corresponding 
to the characteristic boundaries tracked from both edges (trailing and leading) of cell ii. 

For an independently determined velocity field, as in the case of passive scalar (contaminant or 
radionuclide) transport, the obvious choice consistent with second-order accuracy is linear 

A t  

t = O  

i - 3  X l  i-2 i-1 i 

Figure 5. Flux-based MMOC methodology at interior point for CFL> 1, illustrated for cell-wise constant characteristic 
(C3) velocities. Unmarked solid characteristics are tracked forwards from the edges of the upstream computational cells. 
The characteristic marked d is tracked backwards from the end of the time step At. The dashed characteristic is tracked 

backwards from the interpolated time level t # =:(At + tb,) to x +, the location of the interpolated f# 
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interpolation to tc(i-ii) in time over U(i-i ,  n) and U(i-4,  n+ 1). That is, once t c ( i - i i )  has been 
determined from the geometry of Figure 5, we calculate 

UC(i-ii)= U(i-4, tc(i-ii)) 

= U(i -5, n)+(tc(i -ii)/At) (U(i-3,  n+ 1)- U(i-4, n)). (12) 
Higher-order interpolations over more time levels are also possible. For non-linear problems the 
time-step could be iterated for a predictor-corrector evaluation or the fluxing velocities could be 
simply lagged in time, i.e. all U c  = U ( i - f ,  n). This lagged value can also be used for linear 
problems, avoiding the computations for tcs and for equation (12). If the velocity field were slowly 
varying compared to the advected variablef; this would be recommended. It also improves the 
operation count for C F L 9  1 (see below). 

Note that by notation like ‘i-? we mean the cell interface between cells i and i -  1, which is not 
necessarily half-way in physical space between the cell centres. In the finite volume formulation 
used here, the discrete velocities are actually defined at interfaces between cells, not at  the cell 
centres, so no spatial interpolation is involved in determining U(i-4, n), etc. (In the actual 
Fortran implementation the velocity arrays are defined at the trailing faces of cells, so that the 
Fortran ‘U(Z, N)’ corresponds to ‘U( i -+ ,  n)’ here.) 

Although the present methodology is also applicable to a node-centred finite difference 
formulation, the finite volume formulation, with heads (pressures) defined at cell centres and 
velocities at faces (the venerable marker-and-cell a p p r o a ~ h ~ ~ ~ ~ ~  or ‘block-centred finite difference 
m e t h ~ d ’ ~ ) ,  is a ‘mixed’ method which, like the ‘mixed finite element’ methods, has significant 
 advantage^.^ When the Darcy flow continuity equation in terms of head is solved, a discrete 
continuity equation is satisfied over the smallest possible discretization (Ax Ay rather than 
2Ax 2Ay) and convergence rates of both head and velocity components are second-order. Other 
(than ‘mixed’) finite element methods may be expected to give (say) second-order convergence for 
head but only first-order convergence for velocities.’ 

The characteristic-tracking velocities 

The characteristics may be tracked by any trajectory method. (There is no need for consistency 
in evaluation of the characteristic- or trajectory-tracking velocities and the fluxing velocities.) 
Baptista3 recommends high-accuracy methods, including fourth-order Runge-Kutta methods.‘ 
We have used fifth-order RKF (Runge-Kutta-Fehlberg) integration for passive scalar (radio- 
nuclide) t r a n s p ~ r t , ~ ~ ? ~ ~  but it is too expensive for the fluid dynamics calculation. 

The particular method recommended for this flux-based MMOC methodology is the simple 
one of characteristic slopes evaluated from cell-wise constant (in space and time) velocities. Again, 
for an independently determined velocity field, the obvious choice consistent with second-order 
accuracy is bilinear interpolation in space and time: 

UBAR(i- I)=i(U(i--& n)+ U(i -3, n) + U ( i - f ,  n + 1) + U(i-4, n + 1)). (13) 

(Note that UBAR is a cell-centred velocity, not face-centred.) For non-linear problems the time 
step could be iterated or the fluxing velocities could be lagged in time, i.e. UBAR(i -  1) interpo- 
lated between U(i-3, n) and U(i -3 ,  n), or extrapolated in time. 

The use of cell-wise constant velocities for characteristic tracking leads to very significant 
advantages in efficiently arranging the computations. The partial time increments ~ ( i )  (which, it 
may be seen, are simply those local Ats which would give a local cell CFL(i) = 1) are calculated as 

~ ( i )  = Ax(i)/UBAR(i). (14) 
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(See again Figure 5, which is drawn for this particular method of using cell-wise constant 
characteristic slopes.) These can be calculated prior to a time stepping and stored for each cell. 
From the evident geometric similarity of the parallelograms in Figure 5, it is seen that the terms 
tc(ii) in equation (12) are just 

tc(i- l)=i t(i- l), (154 
tc(i- ii)= tc(i- ii + 1) +f t ( i -  ii), (15b) 

so that no real trajectory tracking or progressive construction of geometry is required. 

TheJEux contribution from the core cell 

The location of the foot of the characteristic, denoted x #  in Figure 5 ,  is found from the 
following process. The ‘core’ cell i- iCFL has already been located (see above). Now t #  is 
calculated as the centre of the last (partial) cell time interval: 

t # = $(At - tbot), 

tbt=t(i-  l)+z(i-2)+. . .+ t ( i - iCFL+ 1). 
(16a) 

(16b) 
Then x # is found by backward tracking of the characteristic through (i-i, t # ) to time level n. 
The algebra is slightly complicated, but the geometry is clear. 

For the constant u, constant Ax problem the contributions from the integer CFL cells are exact. 
The only discretization error comes with the evaluation of the flux contribution from the core cell. 
The larger CFL is, the less critical is this choice. (The foot of the characteristic is then relatively 
closer to some node.) Here we are free to choose a method from any of the usual interpolation 
methods used for explicit difference methods (or others such as high-order Lagrangian, Hermite, 
compact, etc., considered by Baptista3). As in the case (see above) of FB-MMOC derivations of 
difference methods for CFL < 1, piecewise constant (upstream-biased) ‘interpolation’ yields the 
flux contribution f #  of the explicit upstream differencing method, whereas linear interpolation 
yields the flux contribution f #  of the Lax-Wendroff method. 

Leonard’s third-order upstream method4’ is a possibility promising higher accuracy at reason- 
able cost. One could also consider ‘reach-back’ (to earlier time levels) characteristic calcu- 
l a t ion~ . ’~ - ’~  However, the method recommended here is to evaluate both the upstream and 
Lax-Wendroff values and to combine them in an algebraic TVD flux limiter, discussed next. 

Flux limiters 

The techniques of flux limiting to achieve high accuracy and virtually non-oscillatory solutions 
are now highly developed, including47 FCT, TVD, EN0 and UL methods. Any of these 
developed for explicit difference methods restricted to CFL < 1 can be applied within this 
FB-MMOC methodology to the core cell. Again, the larger CFL is, the less critical is this choice. 
The ‘algebraic methods’ are particularly easy to appIy within the FB-MMOC methodology, since 
they only require the evaluation of the core cell flux contributions from upstream and 
Lax-Wendroff methods. We have experimented with eight TVD methods47 in the FB-MMOC, 
and all work. (For C F L e  1 the FB-MMOC just reverts to the chosen flux limiter method.) Of 
these, we agree with the evaluations of Leonard4’ that Van Leer’s MUSCL algorithm34 is the 
best. For limited applications (namely shock-tube-like problems where one expects slowly 
varying regions separated by discontinuities), Roe’s ‘S~perbee’~’.~’ gives slightly better results, 
but unfortunately it, like the geometric-based FCT rneth~ds,’~-~* unrealistically steepens smooth 
profiles, and more so in solution-adaptive grids.48 
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Leonard’s ‘ULTIMATE QUICKEST’ method4’ is possibly the most accurate practical 
method presently available for passive scalar advection in 1D. It is in fact compatible with the 
present FB-MMOC methodology, but since it involves a geometric limiter (UL) and third-order 
differencing, the cost in code development time of incorporation for us would not be insignificant. 
In economic terms we have ‘reached the point of diminishing returns’, especially considering the 
base method to be the standard implicit upstream differencing. A further practical consideration 
is that the overall simulation accuracy will be limited by the accuracy of the advection velocity 
field, which at present is second-order. However, since the velocity field is often more slowly 
varying than the advected variable, it would definitely be of interest to incorporate Leonard’s 
method into the FB-MMOC methodology. Especially if high-order trajectory calculations were 
used, the method would not be inexpensive, but for accuracy would likely justify the acronym 
‘ULTIMATE’. 

RECOMMENDED METHOD 

Within the FB-MMOC methodology, then, our particular method of choice, which we dub the 
C3-MUSCL method, involves these features: (1) bilinear interpolation (in space and time) for the 
fluxing velocities, (2) cell-wise constant (in space and time) characteristic velocities and (3) core 
cell evaluation of noi-integer CFL fluxes by both upStream and Lax-Wendroff interpolations, 
combined in (4) Van Leer’s MUSCL TVD flux limiter. 

Comparisons of methods for the constant u, constant Ax problem are shown in Figures 6-10. 
The problem is the advection of a semi-ellipse pulse over 21OAx, calculated with CFL=05,  1.5 
and 1 0 5  We also evaluated the performance on the step function profile and a smooth pulse 
based on a sine-squared function, but agree again (!) with Leonard40 that the semi-ellipse pulse is 
most demanding, featuring both sharp corners and a rounded top, which features stress the ability 
of the method to avoid wiggles and not be overly compressive. 

Figure 6 presents the results from Van Leer’s MUSCL for CFL=0-5. (The FB-MMOC 
methodology is not operative for CFL< 1.) Figure 7 presents the results from C3-MUSCL for 
CFL = 1.5. The results only get better as CFL increases. For CFL = 1.5 and greater a reasonable 
and simple method (Figure 8) is C3-(*(UP+ LW)), which is the C3 FB-MMOC method with an 
ersatz flux limiter consisting of the core cell contribution calculated with a fixed 50% weighting of 
explicit upstream differencing and Lax-Wendroff. For CFL = 10.5, even the (?-UPSTREAM 
method, which is the C3 FB-MMOC method with no TVD flux limiter applied but just explicit 
upstream differencing for the core cell, performs acceptably, as shown in Figure 9. However, the 
C3-MUSCL results are very satisfying indeed, as shown in Figure 10, and this method is also 
robust for CFL < 1. For further comparison, also shown are the results for CFL< 1 from explicit 
upstream differencing and for CFL> 1 the pathetic results from the commonly used implicit 
upstream differencing. (It is not our intention here to justify the present method just by comparing 
it with implicit upstream differencing, but the results are of interest because this method is still in 
common use. A meaningful comparison with good methods, e.g. non-flux-based MMOC, must 
involve variable velocity multidimensional problems to assess the importance of the main 
features of the present m,:hod, namely full conservation and use of flux limiters, and must 
therefore await the development of a multidimensional FB-MMOC code.) 

Although the C3-MUSCL accuracy improves as CFL increases, the operation count per time 
step also increases, since some operations are required for every cell whose forward time 
characteristics influence the face at which the flux is being calculated. For similar treatments of 
the velocity field, the method is comparable in operation count to the conservative explicit 
upstream method for each incremental cell. Depending on many details of the implementations, 
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this method will be more expensive than implicit upstream differencing for CFL> 3-5 in 1D. The 
penalty is not so significant when CFL $1 only locally owing to local grid clustering, which is the 
case with many of the groundwater flow simulations. Also, the operation count per simulation 
(i.e. out to a specified time) decreases as CFL increases. 

Another approach to the pessimistic operation count is to modify the C3 method by not 
interpolating the fluxing velocity U c  over At, but using a constant value over each face. While 
reducing the temporal accuracy, this approach allows each face flux summation to accumulate 
algebraically from face to face, so that the operation count does not increase proportionally to 
CFL. (Note that the non-flux-based semi-Lagrangian methods of trajectory tracking” use 
a single-chord-slope approximation over the entire time step to attain operation counts not 
proportional to CFL, but in the process sacrifice the spatial resolution of u.) 

The real advantage of the method is its accuracy. As Russell and Wheeler’ (see also References 
5 and 16)point out, solutions will be smoother along characteristics than along x, so truncation 
errors (in a Taylor series sense) will be smaller. Note also that any MMOC, and more basically 
the theory of characteristics for hyperbolic PDEs, is incompatible with implicit upstream 
differencing and indeed with any implicit method. If one tries to interpret implicit upstream 
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differencing in terms of interpolation forf# at the foot of the characteristic, its incompatibility 
becomes evident. (The interpolation is done by calculating the CFL-proportional part of the 
increment betweenf(i, n+ 1) andf(i- 1, n+ 1) at the advanced time level and subtracting it from 
f ( i ,  n) at the old time level, which makes no sense as geometric interpolation.) 

For real problems, accuracy would be expected to deteriorate at much higher Courant 
numbers owing to variable velocity in the characteristic tracking and possibly round-off errors. 

Extension to multidimensions and additional terms (diffusion, dispersion, radionuclide decay, 
dual porosity) is planned using operator splitting and LOD (locally one-dimensional) directional 
splitting for advection. The diffusion and reaction terms will be treated by non-directionally split 
implicit time differencing, which will not restrict the time step owing to stability considerations, 
but may of course impose additional constraints on At for accuracy. The diffusion/dispersion 
term requires care in the application of boundary conditions,2 as does the LOD.49 We prefer 
LOD splitting from the viewpoint of both simplicity and accuracy, as shown in the following 
example. 

Consider the simple 2D problem of u, u, Ax and Ay constant. For the special case u/Ax = u/Ay 
the spatial trajectories pass through diagonal node points. If the directional Courant numbers 
CFL,=uAt/Ax= 1 and CFL,=vAt/Ay= 1, it should be possible with an explicit method to 
obtain the exact solutionf(i, j ,  n + 1) =f(i- 1, j -  1, n). As pointed out in Reference 1, the use of 2D 
operators for explicit upstream differencing does not give the exact answer, and in fact the stencil 
only involvesf(i, j, n ) , f ( i -  1, j, n) andf(i, j- 1, n), so that the correct valuef(i- 1, j -  1, n) does not 
even enter into the calculation. (Consistency of the method depends on smoothness.) The same is 
true for 2D Lax-Wendroff, with the additional complication that the 2D interpolation must 
include cross-derivative terms to obtain stability; likewise in 3D. The use of LOD splitting with 
CFL,= CFL,= 1 does give the exact answer for explicit upstream and Lax-Wendroff, and 
requires only 1D interpolation operators to achieve stability in Lax-Wendroff.’ 

The operator splitting and LOD approach in this flux-based MMOC methodology will also 
preserve the symmetric positive definite property of the matrix resulting from implicit time 
differencing of the diffusion/dispersion term. For 1D the present method performs well for 
variable velocity, variable grid spacing and time-dependent boundary  condition^.^' However, 
the practical accuracy of LOD will degrade with variable velocity. A true multidimensional 
MMOC method (without LOD splitting) with some similarity to the present one is given by 
Arbogast et al.” 

The more problematical aspect of multidimensional extension is the treatment of velocity 
reversals. Several approaches come to mind, including fifth-order RKF tracking only locally, but 
it is clear that accuracy will require adequate resolution of the velocity field near reversal, which 
implies local I CFL I < 1. 

Extension to non-orthogonal co-ordinates appears to be quite difficult. Prospects for applica- 
tion to non-linear problems are optimistic, both because the MUSCL flux limiter is successful for 
the Burgers equation and shock  equation^^^,^' and because non-flux-based MMOC methods 
have been successfully applied to non-linear two-phase fl0w.”7’~ Finally, we note that the 
method is fully conservative, not ‘conservative’ only for continuous time discretizations, as the 
term is often used in meteorological and ocean modelling literature. 
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